
The behaviour of resonances in Hecke triangular billiards under deformation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 9275

(http://iopscience.iop.org/1751-8121/40/31/007)

Download details:

IP Address: 171.66.16.144

The article was downloaded on 03/06/2010 at 06:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/31
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 9275–9295 doi:10.1088/1751-8113/40/31/007

The behaviour of resonances in Hecke triangular
billiards under deformation

P J Howard1 and P F O’Mahony

Department of Mathematics, Royal Holloway, University of London, Egham, Surrey TW20 0EX,
UK

E-mail: p.howard@qmul.ac.uk and p.omahony@rhul.ac.uk

Received 9 May 2007, in final form 25 June 2007
Published 19 July 2007
Online at stacks.iop.org/JPhysA/40/9275

Abstract
The right-hand boundary of Artin’s billiard on the Poincaré half-plane is
continuously deformed to generate a class of chaotic billiards which includes
fundamental domains of the Hecke groups �(2, n) at certain values of the
deformation parameter. The quantum scattering problem in these open chaotic
billiards is described and the distributions of both real and imaginary parts of
the resonant eigenvalues are investigated. The transitions to arithmetic chaos
in the cases n ∈ {4, 6} are closely examined and the explicit analytic form
for the scattering matrix is given together with the Fourier coefficients for the
scattered wavefunction. The n = 4 and 6 cases have an additional set of regular
equally spaced resonances compared to Artin’s billiard (n = 3). For a general
deformation, a numerical procedure is presented which generates the resonance
eigenvalues and the evolution of the eigenvalues is followed as the boundary
is varied continuously which leads to dramatic changes in their distribution.
For deformations away from the non-generic arithmetic cases, including that
of the tiling Hecke triangular billiard n = 5, the distributions of the positions
and widths of the resonances are consistent with the predictions of a random
matrix theory.

PACS numbers: 05.45.Pq, 03.65.Nk

1. Introduction

The motion of a particle on a surface of constant negative curvature serves as a paradigm for
classical chaotic motion. The motion exhibits the highest degree of chaos possible being both
Bernouillian and hyperbolic. In fact, Artin’s investigations [1] of a billiard on such a surface
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Figure 1. Region A is the triangular billiard system on the Poincaré half-plane that is considered
here. The angles of the triangle are θ, π/2 and 0. The full region A + B is a fundamental domain
for a Hecke group, at values of θ = π

n
, n > 2 ∈ Z.

established the use of symbolic dynamics in classifying dynamical systems. There is a much
richer structure to the hyperbolic plane compared to the Euclidean plane where there exist
only a finite number of discrete groups together with their fundamental domains which tile
the whole plane. For the hyperbolic plane, there exist an infinite number of discrete groups.
For each of the fundamental domains of these groups, we can define a billiard system. The
most famous of these is Artin’s billiard whose fundamental domain is shown in figure 1 for
θ = π/3.

Being so widely and precisely studied in terms of classical mechanics meant that billiard
systems in hyperbolic geometry were natural candidates for an investigation of quantum chaos.
For billiard systems which are a fundamental domain of some group, there is in fact an explicit
trace formula, Selberg’s trace formula, which allows, in principle, the exact calculation of
quantum energy eigenvalues from classical quantities such as periodic orbits derived from the
group matrices [2]. This exact formula is the analogue of the asymptotic Gutzwiller trace
formula for quantum systems in the semi-classical limit of h̄ → 0.

For bound quantum systems defined by these hyperbolic billiards, it was expected that
energy level spacing statistics would follow the predictions of random matrix theory (RMT)
for a completely chaotic system. Surprisingly, the computed level spacing statistics for Artin’s
billiard and some other fundamental domains obeyed a Poissonian distribution typical of
fully integrable systems [3]. However, other billiard systems showed the expected fit to the
distribution for the Gaussian orthogonal ensemble (GOE) of random matrices [4]. It was not
until several years later that an explanation for these deviations was forthcoming. In fact,
the unexpected statistics only occur in billiard systems which are the fundamental domain of
some arithmetic group [5, 6] which led to the term ‘arithmetic chaos’ [5] being introduced to
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categorize these systems. Bogomolny et al [4] showed that the Poissonian statistics could be
understood in terms of the exponentially large number of degenerate periodic orbits, i.e. all
with the same period, which arise in such systems.

Much as bounded hyperbolic billiard systems should serve as a prototype for bounded
quantum systems, open hyperbolic domains should serve the same purpose for quantum
chaotic scattering. However, whereas a lot of work has been done on calculating the bound
states for hyperbolic systems, much less is known about the complex eigenvalues for the
resonances in the continuum. In this paper, we perform an analysis of the resonance spectrum
for a whole class of hyperbolic triangular billiards which includes several arithmetic Hecke
billiards. Starting from Artin’s billiards which is an arithmetical case and where the scattering
matrix is known analytically [7], we continuously deform the billiard by moving one of the
vertical walls, i.e. by changing L and hence θ in figure 1, and we trace out how the distribution
of resonances change by calculating the resonance positions. As the position of the wall
varies, we encounter two other arithmetical Hecke triangular billiards, i.e. for θ = π/n where
n = 4 or 6 (Artin’s billiard corresponds to n = 3 in figure 1), and we give the derivation
of the scattering matrix in these cases where an additional set of equally spaced resonances
are found compared to Artin’s billiard. The generic behaviour predicted by RMT for chaotic
scattering with a single open channel, the case considered in this paper, is that the level spacing
statistics for the real parts of the resonance positions should be distributed as in the GOE and
the imaginary parts or the widths of the resonances should follow the Porter–Thomas or chi-
squared distribution [8]. We find that this appears generally to be so for deformations away
from the three arithmetical cases mentioned above.

The scattering theory for arithmetic systems violates the expectations for generic chaotic
systems even more dramatically than the statistics of the bound states do. In particular, for
Artin’s billiard the resonance positions are determined by the zeros of Riemann’s zeta function
on the critical line Re(z) = 1

2 [7]. This leads to two distinct features of the resonance spectrum.
First, assuming the Riemann hypothesis, then the imaginary parts of the momenta are all equal
to − 1

4 . Second, the statistics of the real parts of the resonant momenta are given by the
values of the Riemann zeros and follow the statistics of a Gaussian unitary ensemble (GUE)
which is typical of chaotic systems that are not invariant under the operation of time-reversal,
although this symmetry is intact in the system. In addition, for arithmetic billiards, there is an
infinite set of bound states superimposed on the scattering continuum (so-called ‘cusp forms’
in mathematics). Such states arise in atomic scattering when the parameters of a system
conspire to give zero coupling to the continuum, and are extremely sensitive to perturbation
of those parameters [9]. Here, the cusp forms are treated as a part of the resonance continuum
as a conjecture by Phillips and Sarnak [10] states that only arithmetic groups should possess
such an infinite set of cusp forms and that for arbitrary deformations of the underlying group,
they should immediately acquire negative imaginary parts in their energy and thus show up as
resonances. So to follow the resonance distributions consistently under deformation we must
include the cusp forms.

For an arbitrary deformation, we present a general numerical procedure, based on the
collocation method, which enables one to calculate the complex resonance energy eigenvalues.
We thus follow the transition in the distributions of the positions of the resonances and their
widths as we deform the boundary away from the arithmetic Artin’s billiard. Initially, the
width distribution is shown to evolve into a chi-squared distribution, but then as one approaches
the arithmetic n = 4 Hecke billiard, it splits into three distinct groups of resonances: one
which moves closer to the real axis, another which forms the resonances given by the zeros
of the Riemann zeta function and a third group which have their positions at equal spacings
determined by the width of the billiard. As the boundary is further varied away from the
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n = 4 case, a chi-squared distribution is again recovered and the pattern is repeated as the next
arithmetical case is encountered for n = 6. The distribution of the positions of the resonances
also evolves and is shown to be consistent with the predictions of the RMT for non-arithmetical
cases including the Hecke triangular billiard for n = 5.

The billiard system and the deformation considered are introduced in section 2. The
derivation of the scattering matrix for the Hecke triangular billiards, n = 4 and 6, is given in
section 3 and the methods involved in the calculation of the resonances in the general case
are outlined in section 4. The statistics of the resonances are investigated in section 5 and
conclusions are reserved for section 6.

2. Hecke groups and the parameterization of the transition between their
corresponding billiard systems

The Poincaré half-plane is the upper-half of the complex plane in a space with constant negative
curvature (for a review, see [11]). In this model of hyperbolic geometry, the coordinates are
endowed with a metric

gij = y−2δij . (1)

The geodesics in this geometry are circles centred on the x-axis. We will use the fundamental
domains of discrete groups in this geometry as our open billiard systems. The groups we
focus on are the Hecke groups �(2, n) for the Poincaré half-plane, H, which are generated by
the two matrices or transformations S and T ,

S =
(

0 −1
1 0

)
, T =

(
1 L
0 1

)
, (2)

where

L = 2 cos(π/n), n ∈ Z|n > 2. (3)

Elements of �(2, n) act on points of the half plane with the coordinates x and y defined as

x = Re(z), y = Im(z); z = x + ıy, (4)

such that

�(z) = az + b

cz + d
, � =

(
a b

c d

)
∈ �(2, n), (5)

where a, b, c and d are real numbers in general with ad − bc = 1. This is a fractional linear
transformation or Möbius transformation which preserves the hyperbolic distance between
any two points in the plane. In these coordinates, S and T correspond to the operations of
inversion in the unit circle and translation in x by the distance L, respectively [4].

Using S and T, it is easy to show that a fundamental domain for each group can be taken
as the region in H defined by

|Re(z)| � L/2, |z| � 1, z ∈ H. (6)

In figure 1, the fundamental domains for the Hecke groups correspond to L/2 = cos(π/n) =
cos(θ), n ∈ Z|n > 2 and hence correspond to specific lengths L and angles θ . (Note that the
‘triangle’ shape is more clearly seen in the Poincaré disk representation of hyperbolic space.
In figure 1, the angles of the triangle are θ, π/2 and 0 at infinity.) The half plane is tiled by
copies of the fundamental domain generated by S and T.

Figure 1 also illustrates the general open billiard we wish to consider for an arbitrary
L. The y-axis is clearly a symmetry axis and when we study the Schrödinger equation (or
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equivalently the Laplace–Beltrami operator), we can classify the solutions as being even or
odd with respect to reflection about this axis. It is easy to show that for odd states this is
equivalent to taking Dirichlet boundary conditions on all of the walls in billiard A and generates
a discrete spectrum only. For even states, we have instead Neumann boundary conditions on
all the walls in A. It is the even class which contains the continuum and the resonances and it
is those which are of interest in this paper, so our results are confined to one symmetry class
of the spectrum of the full group. Several studies have been done on bound spectra for this
and other symmetry classes, for instance in [11, 12].

The behaviour of the quantum spectrum can be followed as L varies continuously in the
range 1 � L < 2. The case L = 1 corresponds to the modular group and as L is changed
as seen above we encounter each of the Hecke triangle groups �(2, n) in sequential order of
increasing n. The system is open at y = ∞ for all values of L and, classically, the particles are
allowed to enter or leave via this cusp (a cusp is a corner with an angle zero). The restricted
nature of the scattering from these billiards will mean that there is only one available channel
for the quantum scattering, which greatly simplifies matters when compared with general open
systems (see section 3).

By keeping the lower boundary fixed on the unit circle centred at the origin, we ensure all
the walls are geodetic, and thus they provide no focusing or defocusing of trajectories. The
classical dynamics are ergodic for the whole parameter range in L and this is due solely to
the exponential divergence of trajectories caused by the negative curvature of the Poincaré
half-plane. The generic behaviour for chaotic systems is thus expected in the cases where L
does not happen to be the region of a fundamental domain of an arithmetic Hecke group [4].

In fact, one might expect non-generic behaviour for all the cases where there is a group
underlying the triangle (θ = π/n) but it has been shown [13] that similar behaviour to that in
Artin’s billiard is only found for the arithmetic cases n ∈ {3, 4, 6} (that is, not at n = 5, which
is the other case studied here). In these cases, L2 is an integer and the matrix elements of
the group can be expressed simply. In general, they belong to the broader class of arithmetic
groups where the trace of the matrix representations are algebraic integers. The Hecke groups
are particularly simple examples. These features also enable one to construct an explicit
expression for the scattering matrix, S, for the arithmetic cases.

3. Quantum scattering for discrete groups

Since the metric in the Poincaré half-plane is (1), gij = y−2δij , the Schrödinger equation for
these billiards is [11]

y2

(
∂2

∂x2
+

∂2

∂y2

)
ψ = −λψ, (7)

where λ = 2mE/h̄2 + 1
4 and E is the energy of a particle of mass m.

The systems under consideration were described in section 2 and were illustrated in
figure 1. The deformation shifts the right-hand vertical wall, while keeping the lower boundary
fixed as the unit circle in the half plane. Solutions of (7) are sought which obey Neumann
boundary conditions on all walls. Considering first this boundary condition on x = 0 and
x = L/2, that is

∂ψ

∂n̂
= 0, (8)
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where ∂
∂n̂

is the normal derivative of the wavefunction on the boundary, by separation of
variables one can write an infinite set of solutions to (7) for fixed λ that satisfy this condition
in the form

ψm(k; x, y) = cos(2πmx/L)fm (y) , (9)

where m is an integer. On substitution into (7), we obtain the Bessel equation for fm (y),

d2fm

dy2
+

[
k2 + 1/4

y2
−
(

2mπ

L

)2
]

fm = 0, (10)

where k = √
2mE/h̄ is the scaled momentum. For m �= 0 the bounded solutions as y → ∞

are fm = √
yKık(2πmy/L), where Kık is the modified Bessel function of imaginary order

and Kık decay exponentially as y → ∞. For m = 0 the solutions are y1/2±ık . Hence, for
m = 0 a general continuum solution is of the form

ψ0(k; y) = y1/2(y−ık + S(k)yık). (11)

This solution represents incoming and outgoing waves at infinity. S is the S-matrix, here a
scalar since there is only one open or scattering channel available as mentioned earlier in
section 2. Together with the bounded solutions (9), this forms a complete set of solutions to
the scattering problem.

To satisfy the final boundary condition (8) on the lower boundary in figure 1, we take a
linear combination of the decaying and continuum wavefunctions at a given energy. This will
thus have the form

ψ(k; x, y) = b0y
1/2(y−ık + S(k)yık) +

∞∑
m=1

bm(k) cos(2πmx/L)
√

yKık(2πmy/L). (12)

This is essentially a Fourier decomposition of the solution. Due to the unusual nature of these
scattering systems, conventional techniques for locating resonances proved troublesome and
instead a modified collocation method was used for the numerical solution of (7), following its
successful application in [14]. Before giving the details of this method, we show that for the
special cases of L = √

2 and L = √
3, S(k) can be obtained analytically. In the mathematics

literature, formal expressions have been given for the scattering matrix for a general discrete
group [15]. We derive below the explicit expressions for the scattering matrix for the arithmetic
cases n = 4 and 6. A detailed presentation of the calculation for the S matrix, for the modular
group the n = 3 case, can be found in, e.g., [16–18].

3.1. The scattering matrix for L = √
2

For this case n = 4 in (3) and the group is generated by the specific matrices

S =
(

0 −1
1 0

)
, T =

(
1

√
2

0 1

)
. (13)

Thus, the matrix representations of particular group elements take two forms:

σ =
(

a b

c d

)
=
(

1 + 2a′ b′√2

c′√2 1 + 2d ′

)
; {a′, b′, c′, d ′ ∈ Z|ad − 2b′c′ = 1} (14)

and

σ =
(

a b

c d

)
=
(

a′√2 1 + 2b′

1 + 2c′ d ′√2

)
; {a′, b′, c′, d ′ ∈ Z|2a′d ′ − bc = 1}. (15)
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Following Gutzwiller’s derivation [17], we sum the image of an incoming free plane wave
y1/2−ık over all images of the fundamental domain of the group �(2, 4).

We thus obtain a general expression for the scattered wavefunction

ψ(x, y) = ψ(z) =
∑

σ∈�(2,4)

y1/2−ık

|cz + d|1−2ık
, (16)

where only unique images under the mapping σ are summed over.
The symmetry of this sum enforces the desired periodic boundary conditions on ψ since

ψ(x, y) = ψ(z) = ψ(σ(z)) (17)

by construction. It is also obviously a solution to the Schrödinger equation (7) since the
Laplacian commutes with all the mappings gσ = z �→ σ(z). This technique of enforcing
boundary conditions by linearly superposing solutions to a differential equation is familiar
to physicists as the method of images. It is equivalent to the intuitive method of multiple
scattering used, for example in [19], to calculate the resonance spectrum of a three-disc
scattering system.

Starting from (16) and considering which group elements to include in the sum, we first
factor out the left coset �0 since

�0 =
{(

1 q
√

2
0 1

)}
; q ∈ Z (18)

and thus

�0σ =
{(

a + q
√

2c b + q
√

2d

c d

)}
, (19)

which all produce the same y(σz) = y/ |cz + d|2 .

Next we consider the Fourier decomposition ψ = ∑
m am(y)exp(−2πımx/L). ψ for this

group is periodic with period
√

2 in x so concentrating on a0 which leads to the S matrix as
can be seen from equation (12), we get

a0(y) = 1√
2

∫ √
2

0

∑
σ∈�0\�(2,4)

y1/2−ık

|cz + d|1−2ık
dx. (20)

The identity term in the sum (c = 0, d = 1) gives a contribution y1/2−ık and there are two
cases to consider when treating the right cosets

σ�0 =
{(

a b + q
√

2a

c d + q
√

2c

)}
. (21)

These are equal only for any σ and σ̃ with c̃ = c and d̃ ≡ d(mod
√

2c). In both cases, only
one coset representative is required in the sum and the rest are taken into the integral via

y(σz) = y

|cz + d + q
√

2c|2 = y

|c(z + q
√

2) + d|2 , (22)

so that ∫ √
2

0
y(σ (z))1/2−ık dx =

∫ (q+1)
√

2

q
√

2
y(z′)1/2−ık dx ′ (23)

by the simple substitution x ′ = x + q
√

2.
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This brings us to a point where (20) can be written as

a0(y) = y1/2−ık +
1√
2

∫ ∞

−∞

∑
σ∈�0\�(2,4)/�0−I

y1/2−ık

|cz + d|1−2ık
dx. (24)

Substituting ρ = x + d/c, this becomes

a0(y) = y1/2−ık +
1√
2

∑
σ∈�0\�(2,4)/�0−I

1

|c|1−2ık

∫ ∞

−∞

y1/2−ık

(ρ2 + y2)1/2−ık
dρ. (25)

In the first case considered above, equation (14), the
√

2 factor is contained in c and the
determinant constraint ad − 2b′c′ = 1 means that c′ is coprime to d since ad is odd. Thus,
we have to sum over all

c =
√

2c′, c′ ∈ Z (26)

and the sum over d is over all odd integers less than 2c′ and coprime to c′. Since 2c′ is even,
this is just φ(2c′), the number of integers less than 2c′ and coprime to 2c′.

In the second case, equation (15),
√

2 is contained in d so we have to sum over all odd
integers c, and the sum over d ranges over all integers d ′ that are less than c. Thus, we get a
contribution φ(c) from the sum over d, since the determinant constraint 2a′d ′ − bc = 1 now
means that d ′ is coprime to c (bc is odd).

Equation (25) now reads

a0(y)=y1/2−ık +
1√
2

∫ ∞

−∞

y1/2−ık

(ρ2 + y2)1/2−ık
dρ


 ∑

0<c′∈Z

φ(2c′)
21/2−ıkc′(1−2ık)

+
∑

0�c′∈Z

φ(1 + 2c′)
(1 + 2c′)1−2ık


.

(27)

So we have two sums to consider and the total arithmetic term in (27) becomes (putting
s = 1/2 − ık and substituting c for c′ as the dummy index)∑

c odd

φ(c)

c2s
+ 2s

∑
c even

φ(c)

c2s
. (28)

Expanding the sums via the unique representation of integers by primes (cf the Euler product
form for the Riemann zeta function—see [20] for this and many other useful identities), then
factoring out all terms containing factors of 2, we obtain for the sum over odd integers

∑
c

φ(c)

c2s
=
∏
p

{
1 +

(
1 − 1

p

)
p(2s−1)

(
1 +

1

p(s−1)
+ · · ·

)}

=
∏
p

{(
1 − 1

p(2s−1)

)
+
(

1
p(2s−1) − 1

p2s

)
(
1 − 1

p(2s−1)

)
}

⇒
∑
c odd

φ(c)

c2s
= (1 − 1/2(2s−1))ζ(2s − 1)

(1 − 1/22s)ζ(2s)
, (29)

and the even sum can then simply be written as∑
c even

φ(c)

c2s
= ζ(2s − 1)

ζ(2s)

(
1 − (1 − 1/2(2s−1))

(1 − 1/22s)

)
= ζ(2s − 1)

ζ(2s)(22s − 1)
. (30)

Putting all this together finally gives∑
c odd

φ(c)

c2s
+ 2s

∑
c even

φ(c)

c2s
= ζ(2s − 1)

ζ(2s)

(2 + 2s)

(1 + 2s)
, (31)
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The integral in (27) can be transformed to a representation of the beta function [21],∫ ∞

−∞

y1/2−ık

(ρ2 + y2)1/2−ık
dρ = y1−(1/2−ık) �(1/2)�(−ık)

�(1/2 − ık)
. (32)

Then using the functional equation for the zeta function

Z(w) = π−w/2�(w/2)ζ(w) = Z(1 − w), (33)

we obtain a final expression for the S matrix (resubstituting s = 1/2 − ık and remembering
the factor 1/

√
2 from (27))

S(k) = 2ık (
√

2 + 2−ık)

(
√

2 + 2ık)

π−ık�(1/2 + ık)ζ(1 + 2ık)

πık�(1/2 − ık)ζ(1 − 2ık)
, (34)

where ζ is Riemann’s zeta function and � is Euler’s gamma function. S therefore has poles
on the line Im(k) = −1/4, positioned at the non-trivial zeros of the Riemann zeta function
divided by 2 as in the modular case for n = 3, but also in addition a set of regular equally
spaced resonances at

k = r − ı/2, r = (1 + 2n)π/(ln2), n ∈ Z. (35)

The Fourier coefficients am (y) for general m are calculated in the appendix.

3.2. The scattering matrix for L = √
3

In this case n = 6 in (3) and the group is generated by the specific matrices

S =
(

0 −1
1 0

)
, T =

(
1

√
3

0 1

)
. (36)

Thus, the matrix representations of particular group elements now take four forms:

σ =
(

a b

c d

)
=
(

1 + 3a′ b′√3
c′√3 1 + 3d ′

)
or

(
2 + 3a′ b′√3
c′√3 2 + 3d ′

)
;

{a′, b′, c′, d ′ ∈ Z|ad − 3b′c′ = 1} (37)

and

σ =
(

a b

c d

)
=
(

a′√3 2 + 3b′

1 + 3c′ d ′√3

)
or

(
a′√3 1 + 3b′

2 + 3c′ d ′√3

)
;

{a′, b, c, d ′ ∈ Z|3a′d ′ − bc = 1}. (38)

The task of calculating the scattering coefficient proceeds almost exactly as in section 3.1
for the case n = 4. Taking a Fourier decomposition of (16) with period

√
3 and factoring out

the left cosets brings us to an expression for the constant Fourier coefficient,

a0(y) = y1/2−ık +
1√
3

∑
σ∈�0\�(2,6)/�0−I

1

|c|1−2ık

∫ ∞

−∞

y1/2−ık

(ρ2 + y2)1/2−ık
dρ. (39)

The sum naturally splits into two parts over the two classes of matrices described in (37)
and (38),

a0(y) = y1/2−ık +
1√
3

∫ ∞

−∞

y1/2−ık

(ρ2 + y2)1/2−ık
dρ


 ∑

0<c∈Z

31/2−ıkφ(3c)

(3c)1−2ık
+

∑
0<c∈Z|(c,3)=1

φ(c)

(c)1−2ık


.

(40)
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Performing these sums as done earlier for the case L = √
2 in (29), the expression for the

scattering coefficient reduces to ζ(2s−1)

ζ(2s)
times the unitary factor

3ık (
√

3 + 3−ık)

(
√

3 + 3ık)
; (41)

thus,

S(k) = 3ık (
√

3 + 3−ık)

(
√

3 + 3ık)

π−ık�(1/2 + ık)ζ(1 + 2ık)

πık�(1/2 − ık)ζ(1 − 2ık)
, (42)

which has poles on the line Im(k) = −1/4, positioned at the non-trivial zeros of the Riemann
zeta function divided by 2, and in addition a set of regularly spaced resonances at

k = r − ı/2, r = (1 + 2n)π/(ln 3), n ∈ Z. (43)

4. Expansion method for locating resonances at an arbitrary L

Outside of the three special cases for n = 3, 4 and 6, it is not possible to calculate analytically
the S-matrix and the resonance positions. To obtain large numbers of resonances, which are
necessary for performing a statistical analysis of the spectra, a method was developed which
has proved useful over a wide momentum and deformation parameter range L. In essence,
it involves calculating the Fourier coefficients in an expansion of the type (equation (12)) but
using the boundary conditions appropriate to resonance wavefunctions.

When considering an expansion of a resonance wavefunction into a basis set of the form
(12), in order to directly calculate the resonance energies one must enforce the outgoing wave
boundary condition at infinity. That is, we require limy→∞ ψ(k; x, y) = y1/2+ık , an outgoing
wave only. To do this, we replace the continuum wavefunction by ψ0(k; x, y) = y1/2+ık

instead of the form given in (11). The full wavefunction is thus expanded in the form

�N(k; x, y) =
N−1∑
m=0

Amψm(k; x, y), (44)

where ψm(k; x, y) were defined in equation (9) for m �= 0 and given above for m = 0.

This wavefunction by construction represents a resonance state and obeys the Neumann
boundary condition at x = 0 and x = L/2. To determine the coefficients Am and the complex
resonance eigenenergies or eigenmomenta k, one must enforce the Neumann boundary
condition on the lower boundary in figure 1. Here this is done by using a modified collocation
method [22, 23].

One calculates the normal derivative of (44) on the lower boundary and Fourier expands it
into a set of N orthogonal functions sin

(
nπs
L

)
. As discussed in, e.g. [22, 24], this modification

of the method has several advantages. The first N Fourier coefficients of this expansion Dn

are given by

Dn =
N−1∑
m=0

CnmAm, (45)

where

Cnm =
∮

ds sin
(nπs

L

) ∂ψm

∂n̂
(k; s), n = 1, . . . , N; (46)
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s is a parameterization of the lower billiard boundary and L is its length in that parameterization.
In (46), s ranges from 0 to

smax = 2 tanh−1



√√√√ (L/2)2 + (1 −

√
1 − (L/2)2)2

(L/2)2 + (1 +
√

1 − (L/2)2)2


 , (47)

where the geodesic distance is used. The normal derivative on the lower boundary is given by
∂

∂n̂
(ψm) = ∇ψm · n̂ = yx

∂ψm

∂x
+ y2 ∂ψm

∂y
. (48)

The final ingredient in calculating the matrix elements (46) is the integral over s, for which an
extended tenth-order quadrature formula is used.

The boundary condition on the lower boundary is now satisfied by setting the Fourier
coefficients (45) equal to zero or equivalently by searching for the complex values k such that
the determinant of the N by N complex matrix Cnm is zero. The summations are necessarily
truncated at N, but N is chosen sufficiently large to achieve convergence of the eigenvalues.
The higher the energy of the resonance, the more values of n and m are required. We scale N
with the momentum so that N = int(rscal + α), where

rscal = Re(k)L/(2π
√

1 − (L/2)2) (49)

and int means taking the integer part of the expression. α is a small integer (good convergence
was achieved for values of α between 2 and 6) which can be varied to help convergence for
particular resonances. For higher values of N, the Bessel functions included become
exponentially small and do not contribute significantly. This is due to the turning point
in the differential equation (10) at k ≈ 2πmy/L. Conservatively, setting y to its lowest point
in the billiard gives the scaling (49). In fact this is excessive and the parameter α can be
lowered at large L to compensate.

In order to avoid overflowing the maximum computational precision available, each row
of the matrix is scaled by its largest element, that is

Cnm → Cnm/(maxn(Cnm)), (50)

maxn indicating the maximum value of the operand when n takes all possible values. Then,
a singular-value decomposition is performed, using a standard LAPACK routine, to ease
detection of the complex zeros of the determinant [25, 26].

The most time-consuming part of our routine, aside from the iterations required to reach
any desired value of the perturbation parameter, is the setting up of the matrix (46) due to the
many calculations of the Bessel functions (here involving complex values of k) required for
each element. Powerful expansions similar to those in [23] are used taken mostly from [27]
but largely based on routines used in [28].

In order to calculate the widths and positions of the resonances at new values of the
deformation parameters, first many eigenvalues, both cusp forms and resonances, were
obtained for the modular group (L = 1), details of which were given in [14]. Using these
values as seeds for the calculation, the parameter L can be varied a little, and a search in
the complex plane for zeros of the least singular value of the matrix C near to the old values
is performed. Then the parameters can be varied again, by larger amounts at each step, as
information about the velocity of each resonance with each parameter allows better guesses
as to the perturbed value.

The main case where there are results available [29–31] to check against those obtained
here is for Artin’s billiard (L = 1). The S-matrix for L = 1 is

S(k) = π−ık�
(

1
2 + ık

)
ζ(1 + 2ık)

πık�
(

1
2 − ık

)
ζ(1 − 2ık)

, (51)
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Table 1. Comparison of methods for finding resonances of the billiard systems for the arithmetical
cases, where m is just used to sequentially label the resonances.

m,L Exact Expansion method

2, 1 10.511 020 −0.25ı 10.511 125 −0.250 008ı

4, 1 13.779 751 −0ı 13.779 625 0.000 005ı

10, 1 20.459 360 −0.25ı 20.459 875 −0.250 315ı

50, 1 40.688 666 −0ı 40.688 500 −0.000 000ı

200, 1 76.512 345 −0.25ı 76.512 346 −0.250 000ı

1,
√

2 4.532 360 −0.5ı 4.532 432 −0.499 993ı

4,
√

2 10.511 020 −0.25ı 10.511 002 −0.249 965ı

10,
√

2 15.212 438 −0.25ı 15.212 431 −0.250 022ı

25,
√

2 24.112 353 −0ı 24.112 326 0.000 040ı

1,
√

3 2.859 601 −0.5ı 2.859 602 −0.500 005ı

4,
√

3 8.038 861 −0ı 8.038 862 0.000 000ı

10,
√

3 12.505 428 −0.25ı 12.505 423 −0.249 999ı

25,
√

3 19.896 104 −0ı 19.896 104 −0.000 000ı

where �(z) is Euler’s gamma function and ζ(z) is Riemann’s zeta function [7, 32].
The resonances (poles of S) are given by the zeros of the denominator, which occur at
k = kn/2 − ı/4, according to the Riemann hypothesis, where kn are the tabulated Riemann
zeros. (The ‘trivial’ zeros of ζ(1 − 2ık) are cancelled by the zeros of �( 1

2 + ık) except for
k = ı/2 which gives the single bound state at k2 = −1/4.) Many tabulated eigenvalues also
exist for the even cusp forms for L = 1 and a more restricted set for L = √

2 and L = √
3

[12]. The numerical results presented here give both the resonances on the critical line and
the cusp forms in one calculation. This method produces results in agreement with the cusp
forms found in the literature [12, 29–31] for the known cases of L ∈ {1,

√
2,

√
3}.

Table 1 gives some of our results for the resonance spectra of the billiard systems
parameterized by L. The title ‘exact’ for the first column refers to tabulated results for the
Riemann zeros, numerical results for the cusp forms calculated by other groups [30, 12, 31],
and predictions from equations (35) and (43) accurate to at least five decimal places. In our
calculations using the expansion method, we worked to the fourth decimal place and one can
see that good agreement is obtained at this level.

In the following sections, we present our results for the distribution of resonances for
a general deformation length L starting from the case of Artin’s billiard and deforming the
right-hand wall continuously until L = √

3 is reached, which is the point where our present
calculations were terminated, all arithmetic systems having been covered.

5. Results

5.1. The widths

We first show the distributions for the imaginary parts of the resonance positions or the
widths. Figures 2–8 show the numerical integrated width density I (w) as it evolves in the
range 1.000 � L �

√
3. RMT predicts a Porter–Thomas distribution for the widths for

generic single-channel chaotic scattering systems [8]. The dashed curve is the integrated
Porter–Thomas distribution given by

I (w) = erf(
√

wn/2), (52)

where erf(x) is the error function and wn is the resonance width normalized to its mean value.
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Figure 2. Integrated width density of 200 resonances for L between 1.000 and 1.029. The dashed
curve is the integrated Porter–Thomas distribution. The case L = 1.000 corresponds to the Hecke
group (Artin’s billiard) with θ = π/3.

Figures 2, 6 and 8 show the transition to arithmetic chaos near the special cases of
arithmetic groups at L = √

1,
√

2 and
√

3, corresponding to θ = π/3, π/4 and π/6,
respectively. In these cases, we see the predictions of sections 3.1 and 3.2 confirmed in
the numerical work with the existence of a class of resonance states with imaginary part equal
to − 1

4 positioned at the Riemann zeros, i.e. k = kn/2 − ı/4, as in the case of the modular
domain, and a class with imaginary part equal to − 1

2 positioned at regular intervals of 2π
ln(L)

.

The width distribution clearly does not follow the Porter–Thomas distribution at or near to
these three special arithmetic cases but asL is varied away from these particular cases, the three
groups of ‘resonances’ merge again and the distribution becomes much closer to the generic
Porter–Thomas distribution (see figures 4 and 7). There appears to be no significant correlation
between which states fall into which class at different values of L, in fact states often switch
class during the intermediate deformation. The phenomenon seen here is attributed purely
to arithmetic chaos due to the underlying groups’ structure. The best agreement with RMT
appears to be for L = 1.252. For other L, away from the arithmetical cases, there seems to be a
reasonable agreement with RMT. However, one would need a larger set of resonances to make
a more definitive statement about the statistics. In figure 7, the case L = 1.618, θ = π/5
corresponds to the Hecke group with n = 5 and the distribution is clearly different from
the n = 3, 4 and 6 cases and it is seen to agree reasonably well with the generic RMT
case, although there is some discrepancy for shorter widths. Bogomolny and Schmit [33] have
shown that there are exponential degeneracies for the periodic orbits for this case also although
with a lower exponent than for the arithmetic cases. This may be true for intermediate L also
and may have an effect on the distributions.

A perhaps surprising aspect of the widths for arithmetic cases n = 4 and n = 6 from the
quantum chaos perspective is the appearance of a set of regularly spaced resonances related to
the width of the billiard which would give rise to regular modulations in the time delay [32].
This is reminiscent of the regular modulations in the density of states for the stadium billiard
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Figure 3. Integrated width density of 200 resonances for L between 1.060 and 1.218. The dashed
curve is the integrated Porter–Thomas distribution.
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Figure 4. Integrated width density of 200 resonances for L between 1.252 and 1.351. The dashed
curve is the integrated Porter–Thomas distribution.

due to the family of ‘bouncing ball’ orbits [34, 25] although no such family would appear to
exist for arithmetic hyperbolic systems .

5.2. Level-spacing statistics

The nearest-neighbour distribution for the statistics of the unfolded eigenmomenta is shown
in figures 9–11. The distributions of level-spacings include the three arithmetic cases, and
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Figure 5. Integrated width density of 200 resonances for L between 1.383 and 1.408. The dashed
curve is the integrated Porter–Thomas distribution.
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Figure 6. Integrated width density of 200 resonances for L between 1.414 and 1.504. The dashed
curve is the integrated Porter–Thomas distribution. The case L = 1.414 corresponds to the Hecke
group with θ = π/4.

demonstrate the return to the GOE behaviour in between. The case of L = 1.618, θ = π/5
shows reasonably good agreement with the GOE statistics. As with the widths, the billiard
with L = 1.252 appears to agree best with the GOE. In all the graphs, we additionally plot the
integrated Poissonian (dashed curve) distribution

I (s) = 1 − e−s , (53)
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Figure 7. Integrated width density of 200 resonances for L between 1.560 and 1.638. The dashed
curve is the integrated Porter–Thomas distribution. The case L = 1.618 corresponds to the Hecke
group with θ = π/5. This is not an arithmetic group, but it tiles the plane.
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Figure 8. Integrated width density of 200 resonances for L between 1.710 and 1.732. The dashed
curve is the integrated Porter–Thomas distribution. The case L = 1.732 corresponds to the Hecke
group with θ = π/6.

which is predicted for generic integrable systems [35, 36]. Also shown are the integrated
Wigner surmise for both the GOE (Gaussian orthogonal ensemble) (finely dashed curve)

I (s) = 1 − e−πs2/4 (54)
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Figure 9. Integrated level-spacing distribution of 200 resonances for L = 1.252 and L = √
2 �

1.414 (θ = π/4). The dashed curve is the integrated Poisson distribution, the finely dashed curve
is the GOE prediction and the solid curve is the GUE prediction.
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Figure 10. Integrated level-spacing distribution of 200 resonances for L = 1.445 and
L = 1.618 (θ = π/5). The dashed curve is the integrated Poisson distribution, the finely dashed
curve is the GOE prediction and the solid curve is the GUE prediction.
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Figure 11. Integrated level-spacing distribution of 200 resonances for L = 1.687 and
L = √

3 � 1.732 (θ = π/6). The dashed curve is the integrated Poisson distribution, the finely
dashed curve is the GOE prediction and the solid curve is the GUE prediction.

and the GUE (Gaussian unitary ensemble) (solid curve)

I (s) = − 4

π
s e− 4

π
s2

+ erf(2s/
√

π), (55)

which are very close to the distributions predicted for fully chaotic systems with time-reversal
invariance and broken time-reversal invariance, respectively [8].

For the arithmetic cases, the distribution is essentially a weighted mixture of the Poisson
and GUE distributions as shown in [14].

The integrated level density of the Brody distribution is [37]

I (s, ν) =
∫ s

0
p(x, ν) dx = 1 − exp(−a(ν)sν+1). (56)
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Figure 12. Variation of the Brody parameter ν with L.

For ν = 0 this gives (53) and for ν = 1 (54) is obtained, and thus the Brody parameter ν serves
as an empirical measure of how close a distribution is to either of those particular cases.

A least-squares fitting of the Brody parameter to our data was made and its variation
followed, for the entire L range, in figure 12. The three transitions to arithmetic chaos are
dramatically displayed as the sharp drops at L ∈ {1,

√
2,

√
3}. These are mainly due to the

large set of cusp forms with zero width and Poissonian statistics at these values. There appear
to be lesser drops away from these special cases, but the current amount of data available does
not make it possible to say much about them.

For bound systems, i.e. the odd spectrum, Bogomolny et al have shown that the non-
generic behaviour displayed by arithmetic systems can be interpreted in terms of the Selberg
trace formula, as being due to an exponential degeneracy in the number of periodic orbits with
the same period [5]. Although such degeneracies persist for the Hecke group with n = 5,

they are not large enough to affect the statistics, which are predicted to have the generic RMT
behaviour. Our results indicate that the same holds true for open systems, i.e. the even spectra.

6. Conclusions

We have studied the behaviour of resonances for a class of billiard systems on the Poincaré
half-plane. In particular, we have followed how the distributions of the positions and widths
of the resonances move as the shape of Artin’s billiard is perturbed by varying its width.
Of particular interest were transitions in the distributions of the widths near values of the
perturbation parameters which correspond to the underlying billiard being a fundamental
domain for some arithmetic group. Analytic solutions for the resonances in these particular
arithmetic systems were derived in section 3. While for most values of the perturbation
parameters, the resonant energies distribute randomly according to the predictions of RMT, in
these special cases three classes of resonance were observed: those which have zero imaginary
part and become bound cusp forms; those with imaginary part equal to − 1

4 positioned at half
the magnitude of the Riemann zeros; and the class with imaginary part equal to − 1

2 positioned
at regular intervals of 2π

ln(L)
.

For a general deformation, a specific numerical technique based on basis expansion
collocation methods was developed to calculate the resonance positions and excellent
agreement was obtained with the theory and the results of other groups, where they exist
(see table 1). In the vast majority of parameter space, there are no other results in the literature
for the resonance eigenvalues. Away from the arithmetic systems, largely generic behaviour
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consistent with the predictions of RMT was observed. We also followed the variation of
the Brody parameter characterizing the variation of the nearest-neighbour distribution of the
resonance positions, and the scaling of this parameter under transitions to arithmetic chaos
would also be of interest for further study. Preliminary results agreed well with those obtained
elsewhere [38] for bound systems.

It has been seen that a spectral reorganization occurs in the arithmetic cases, where the
S-matrix can be calculated analytically but not the cusp forms. This leads to non-generic
statistics for the resonance levels and their widths. At first sight, the classical mechanics in
arithmetic billiards seem no different from the generic case in that both have fully chaotic
phase spaces. However, Bogomolny et al have shown [5] that in arithmetic cases there is an
exponential degeneracy in the number of periodic orbits with the same period. This affects
the Selberg trace formula [11] and hence the distribution of energy levels, leading to, in
particular, Poissonian statistics for the cusp forms (they only studied bound systems). In
addition, although there is a remaining exponential degeneracy for non-arithmetic cases with a
smaller exponent, e.g. for the Hecke group with n = 5 above, they showed that the statistics in
those cases appeared to be generic. For the open non-arithmetic systems studied here, and in
particular for the Hecke triangular billiard n = 5, we find that both the level spacing statistics
and the distribution of the widths are consistent with RMT for chaotic systems.
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Appendix. Calculation of Fourier coefficients with m �= 0 in the case L =
√

2

Starting from an expression for the mth Fourier coefficient of the wavefunction obtained by
the method of images (16), which has a period L, and using the substitution s = 1/2 − ık,

am(y) = 1√
2

∫ √
2

0

∑
σ∈�0\�(2,4)

ys

|cz + d|2s
exp(−2πımx/

√
2) dx. (A.1)

The identity term in the sum gives a contribution δ0m(y1−s) and using the right coset
decomposition again, we get

am(y) = 1√
2

∫ ∞

−∞

∑
σ∈�0\�(2,4)/�0−I

ys

|cz + d|2s
exp(−2πımx/

√
2) dx, m �= 0. (A.2)

Factoring out the arithmetic term from the integral as before, and performing the same
substitutions on the latter, this becomes

am(y) =
∑
c>0

1

|c|2s

∑
0�d<

√
2c|ad−bc=1

exp(−2πımyd/
√

2c)
y1−s

√
2

×
∫ ∞

−∞

exp(−2πımyt/
√

2)

(1 + t2)2s
dt, m �= 0. (A.3)

The integral gives (see, e.g. [16]) a Bessel function,

y1−s

√
2

∫ ∞

−∞

exp(−2πımyt/
√

2)

(1 + t2)2s
dt

= 1√
2

2πs

∣∣∣∣ m√
2

∣∣∣∣
s− 1

2

�(s)−1√yKs− 1
2
(2πmy/

√
2), m �= 0, (A.4)
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and we are just left with the arithmetic factor∑
c>0

1

|c|2s

∑
0�d<

√
2c|ad−bc=1

exp(−2πımd/
√

2c). (A.5)

This factors, as in the case of a0, into two sums over the two classes of matrix representation
of the group �(2, 4), (14) and (15).∑
c>0

1

|c|2s

∑
0�d<

√
2c|ad−bc=1

exp(−2πımd/
√

2c)

=
∑

c>0∈Z

1

|√2c|2s

∑
0�d<2c∈Z|(2c,d)=1

exp(−2πımd/2c)

+
∑

c�0∈Z

1

|2c + 1|2s

∑
0�d<2c+1∈Z|(2c+1,d)=1

exp(−2πımd/(2c + 1)), (A.6)

which gives∑
even c>0

2s

|c|2s

∑
0�d<c∈Z|(c,d)=1

exp(−2πımd/c) +
∑
odd c

1

|c|2s

∑
0�d<c∈Z|(c,d)=1

exp(−2πımd/c).

(A.7)

Then using the identity∑
0�d<c∈Z

exp(−2πıd/c) = 0, (A.8)

we see that ∑
0�d<c∈Z|(c,d)=1

exp(−2πımd/c) =
∑

u|m,u|c
uµ(c/u), (A.9)

where u are the mutual divisors of m and c, and µ(v) is the Möbius function,

µ(v) =



0, if v has one or more repeated prime factors
1, if v = 1
(−1)k, if v is a product of k distinct primes.

(A.10)

This means we only sum over c of the form c = uj, j ∈ Z in (A.7), and the result is∑
even ju>0

2s

|ju|2s

∑
u|m

uµ(j) +
∑

odd ju

1

|ju|2s

∑
u|m

uµ(j)

=
∑

even u|m

∞∑
j=1

2s

|ju|2s
uµ(j) +

∑
odd u|m

∑
even j

2s

|ju|2s
uµ(j) +

∑
odd u|m

∑
odd j

1

|ju|2s
uµ(j).

(A.11)

Then using the identity for the Riemann zeta function∑
j

µ(j)

|j |2s
= ζ(2s)−1, (A.12)

and removing the respective odd or even terms as required from the sum, via the product
representation

ζ(2s)−1 =
∏
p

(
1 − 1

p2s

)
, (A.13)
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where p here indicate the prime numbers, we arrive at our final result in the form of

am(y) = 1

πık�
(

1
2 − ık

)
ζ(1 − 2ık)(

√
2 + 2ık)

2
√

π

∣∣∣∣ m√
2

∣∣∣∣
−ık √

yK−ık(
√

2mπy)

×

2−ık(

√
2 + 2ık)

∑
even u|m

u2ık +
∑

odd u|m
u2ık


 , (A.14)

where we respecialized to s = 1/2 − ık.

A similar calculation can be performed for am(y) for the L = √
3 case.
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